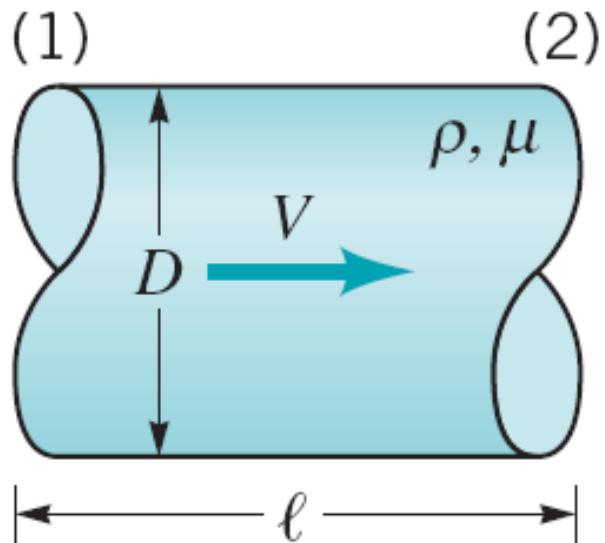


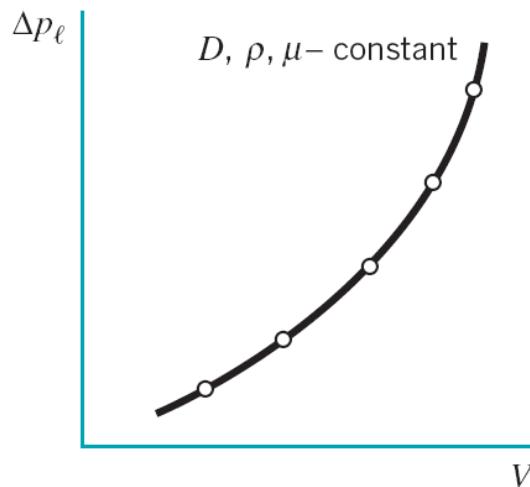
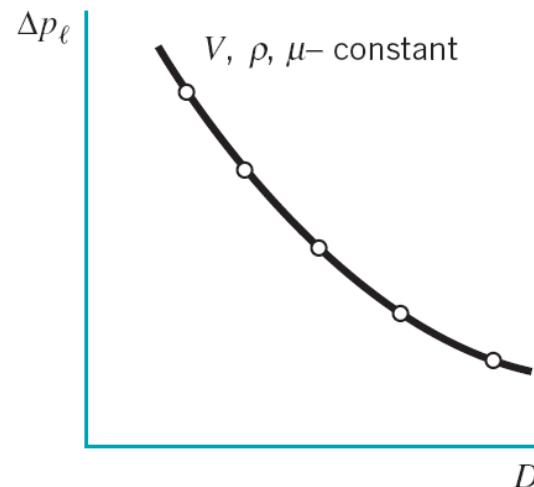
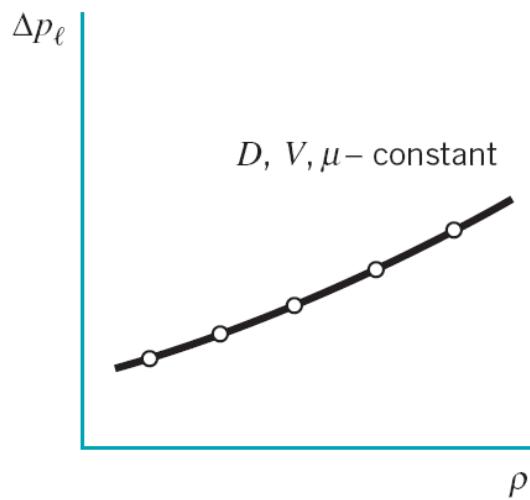
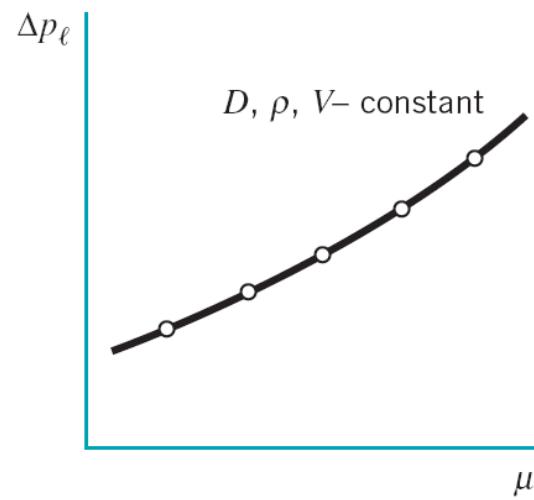
Dimensional analysis

Fluid mechanics is still partly an experimental science



$$\Delta p_l = f(D, \rho, \mu, V)$$

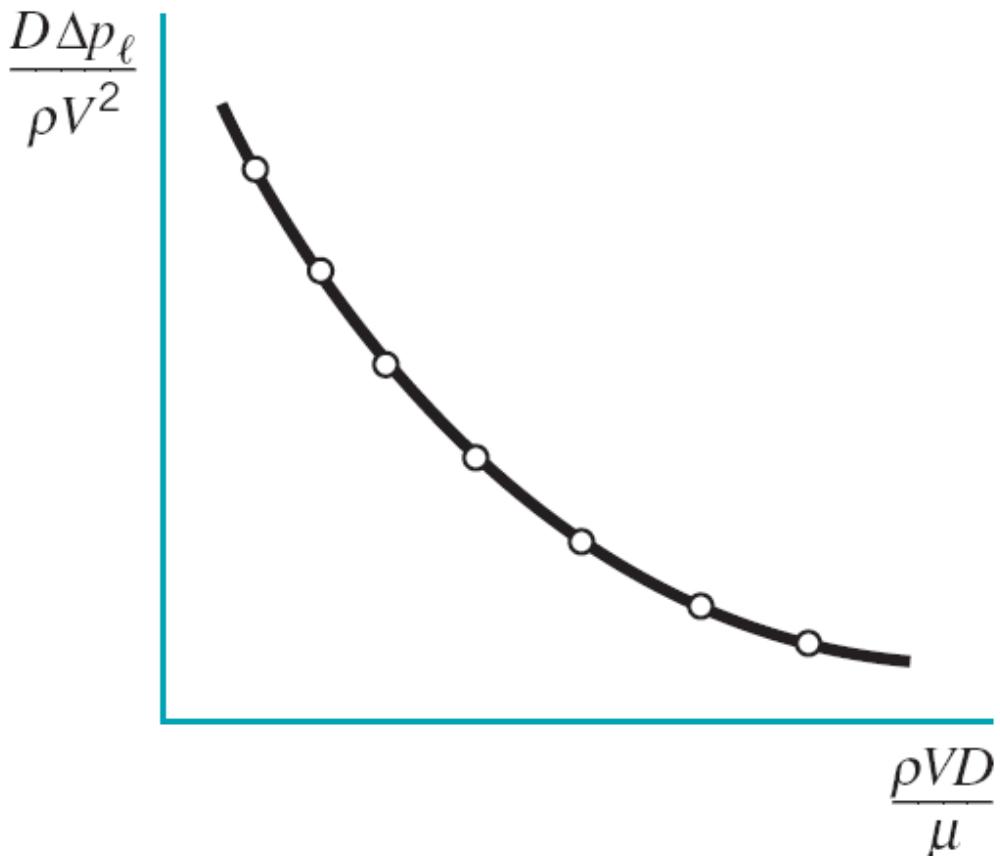
$$\Delta p_\ell = (p_1 - p_2)/\ell$$



- Expensive
- Impractical (i.e., vary ρ - keep μ constant)
- Difficult to analyse (combine curves)

Best alternative: dimensional analysis

$$\frac{D\Delta p_l}{\rho V^2} = \phi\left(\frac{\rho V D}{\mu}\right)$$



- Only two variables instead of five
- Easier to work with (vary V only, while keeping D , ρ , μ constant)
- Dimensionless groups -> no unit dependence

Buckingham π -theorem

“If an equation involving k variables is dimensionally homogeneous, it can be reduced to a relationship among $k - r$ independent dimensionless products (π-terms), where r is the minimum number of reference dimensions required to describe the variables”

Reference dimensions: Usually some or all of **F** (force), **L** (length) and **T** (time)
or **M** (mass), **L** (length) and **T** (time)

or combinations of the basic dimensions (i.e., MT^2 , L or FL , T)

Note: We cannot use both **F** and **M**, because the two are not independent of each other. Force is related to mass through Newton's 2nd law:

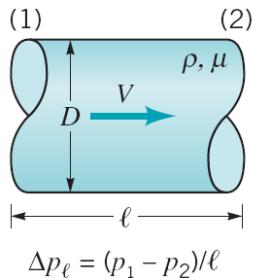
$$F = M \cdot a$$

Determination of pi-terms

1. List all variables that are involved in the problem
 - Geometry
 - Fluid properties (density, viscosity, etc.)
 - External effects (velocity, pressure, gravity, etc.)
 - Include variable even if their value is constant (i.e., g)
 - Variables must be independent of each other (i.e., not all of ρ , g and γ because $\gamma = \rho g$)
2. Express each variable in terms of basic dimensions
3. Determine the required number of pi-terms
4. Select a number of repeating variables, where the number required is equal to the number of reference dimensions
5. Form a pi-term by multiplying one of the nonrepeating variables by the product of the repeating variables, each raised to an exponent that will make the combination dimensionless
6. Repeat Step 5 for each of the remaining nonrepeating variables
7. Check all the resulting pi-terms to make sure they are dimensionless
8. Express the final form as a relationship among the pi-terms and think what it means

Example: pipe flow

Step 1



$$\Delta p_l = f(D, \rho, \mu, V)$$

Geometry: D
Fluid properties: μ , ρ
External effects: V

Step 2

$$\Delta p_e \doteq (FL^{-2}) L' \doteq FL^{-3}$$

$$D \doteq L$$

$$\rho \doteq ML^{-3} = (FT^2 L^{-1}) L^{-3} = FL^{-4} T^2$$

$$\mu \doteq FL^{-2} T$$

$$V \doteq LT^{-1}$$

Step 3

5 variables $(\Delta p_e, D, \rho, \mu, V)$

- 3 reference dimensions (F, L, T)

= 2 π -terms

Step 4

Select as repeating variables: D, V and ρ

Step 5

$$\begin{aligned}\pi_1 &= \Delta P_e \cdot D^\alpha V^b \rho^c \\ &\doteq F L^{-3} \cdot (L)^\alpha \cdot (L T^{-1})^b \cdot (F L^{-4} T^2)^c \doteq F^0 L^0 T^0\end{aligned}$$

$$\therefore 1 + c = 0 \quad (F)$$

$$-3 + \alpha + b - 4c = 0 \quad (L)$$

$$-b + 2c = 0 \quad (T)$$

$$c = -1 \quad b = -2 \quad \alpha = 1$$

$$\text{So, } \pi_1 = \frac{\Delta P_e \cdot D}{\rho V^2}$$

Step 6

$$\begin{aligned}\pi_2 &= \mu D^\alpha V^b \rho^c \\ &\doteq (F L^{-2} T) L^\alpha (L T^{-1})^b (F L^{-4} T^2)^c = F^0 L^0 T^0\end{aligned}$$

$$1 + C = 0 \quad (F)$$

$$-2 + \alpha + b - 4C = 0 \quad (L)$$

$$1 - b + 2C = 0 \quad (T)$$

$$C = -1 \quad b = -1 \quad \alpha = -1$$

$$\therefore \pi_2 = \frac{\mu}{DV\rho}$$

$$\text{or } \pi_2 = \frac{\rho V D}{\mu} \\ \text{Reynolds \#}$$

Note: We can raise π -terms to any power. They remain valid nondimensional π -terms!

Step 7

Check π -terms:

$$\pi_1 = \frac{\Delta P_e \cdot D}{\rho \cdot V^2} \doteq \frac{FL^{-3} \cdot L}{(FL^{-4}T^2) \cdot (LT')^2} = F^0 L^0 T^0 \checkmark$$

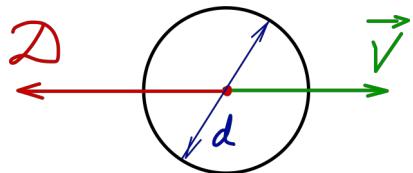
$$\pi_2 = \frac{\rho V D}{\mu} = \frac{(FL^{-4}T^2)(LT')L}{FL^{-2}T} = F^0 L^0 T^0 \checkmark$$

Step 8

$$\frac{\Delta P_e \cdot D}{\rho V^2} = \phi \left(\frac{\rho V D}{\mu} \right)$$

Example: drag on a sphere

Step 1



$$D = f(d, \mu, \rho, V)$$

Geometry: d
Fluid properties: μ, ρ
External effects: V

Step 2

$$D \doteq F$$

$$d \doteq L$$

$$\rho \doteq ML^{-3} = (FT^2L^{-1})L^{-3} = FL^{-4}T^2$$

$$\mu \doteq FL^{-2}T$$

$$V \doteq LT^{-1}$$

Step 3

5 variables (D, d, ρ, μ, V)

- 3 reference dimensions (F, L, T)

= 2 π -terms

Step 4

Select as repeating variables: d, V and ρ

Step 5

$$\begin{aligned}\pi_1 &= D \cdot d^\alpha V^b \rho^c \\ &\doteq F \cdot (L)^\alpha \cdot (LT^{-1})^b \cdot (FL^{-4}T^2)^c \doteq F^0 L^0 T^0 \\ \therefore \quad 1 + c &= 0 \quad (F) \\ \alpha + b - 4c &= 0 \quad (L) \\ -b + 2c &= 0 \quad (T) \\ \Rightarrow \quad c &= -1 \quad b = -2 \quad \alpha = -2\end{aligned}$$

$$\text{So, } \pi_1 = \frac{D}{\rho V^2 d^2}$$

Step 6

$$\begin{aligned}\pi_2 &= \mu d^\alpha V^b \rho^c \\ &\doteq (FL^2T) \cdot L^\alpha \cdot (LT^{-1})^b \cdot (FL^{-4}T^2)^c \doteq F^0 L^0 T^0\end{aligned}$$

$$1 + C = 0 \quad (F)$$

$$-2 + \alpha + b - 4c = 0 \quad (L)$$

$$1 - b + 2c = 0 \quad (T)$$

$$C = -1 \quad b = -1 \quad \alpha = -1$$

$$\therefore \pi_2 = \frac{\mu}{DV\rho}$$

$$\text{or } \pi_2 = \frac{\rho V D}{\mu}$$

Step 7

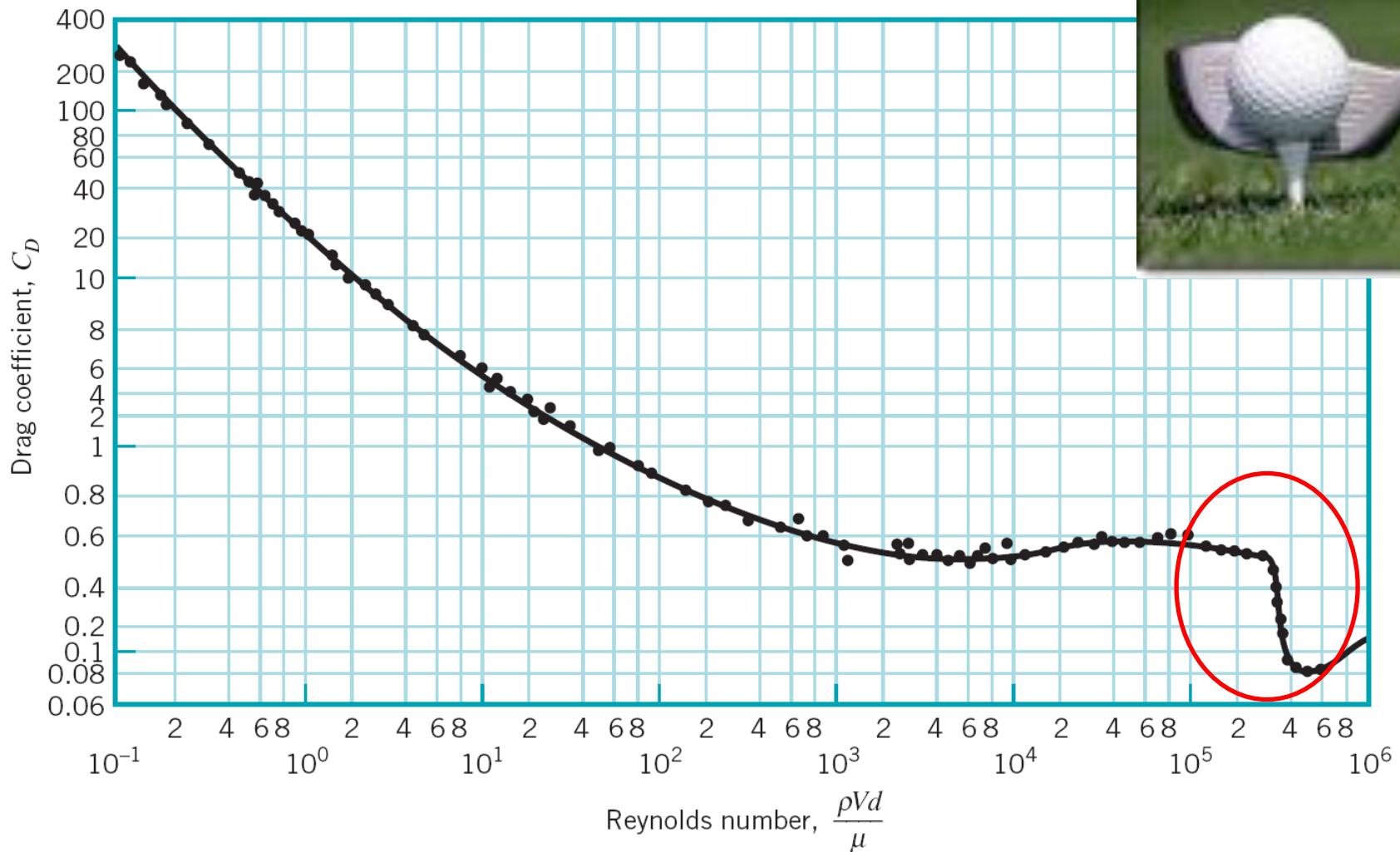
Check π -terms:

$$\pi_1 = \frac{D}{\rho V^2 d^2} \stackrel{?}{=} \frac{F}{(F L^{-4} T^2) (L T^{-1})^2 L^2} = F^0 L^0 T^0 \quad \checkmark$$

$$\pi_2 = \frac{\rho V D}{\mu} = \frac{(F L^{-4} T^2) (L T^{-1}) L}{F L^{-2} T} = F^0 L^0 T^0 \quad \checkmark$$

Step 8

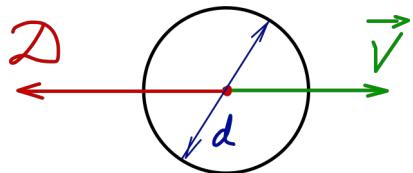
$$\frac{D}{\rho V^2 d^2} = \phi \left(\frac{\rho V D}{\mu} \right)$$



The effect of Reynolds number on the drag coefficient, C_D for a smooth sphere with $C_D = \mathcal{D}/\frac{1}{2} A \rho V^2$, where A is the projected area of sphere, $\pi d^2/4$

Example: drag on a sphere in viscous fluid (Stoke's law)

Step 1



$$D = f(d, \mu, V)$$

Geometry: d
Fluid properties: μ
External effects: V

Very viscous fluid
or slowly moving
sphere.

Viscous effects
dominate.

Inertia can be
neglected

Step 2

$$D \doteq F$$

$$d \doteq L$$

$$\mu \doteq FL^{-2}T$$

$$V \doteq LT^{-1}$$

Step 3

4 variables (D, d, μ, V)

- 3 reference dimensions (F, L, T)

= 1 π -term

Step 4

Select as repeating variables: d, V and μ

Step 5

$$\begin{aligned} \Pi_1 &= D \cdot d^\alpha V^b \mu^c \\ &\doteq F \cdot (L)^\alpha \cdot (LT^{-1})^b \cdot (FTL^{-2})^c \doteq F^0 L^0 T^0 \end{aligned}$$

$$\therefore 1 + c = 0 \quad (F)$$

$$\alpha + b - 2c = 0 \quad (L)$$

$$-b + c = 0 \quad (T)$$

$$\Rightarrow c = -1 \quad b = -1 \quad \alpha = -1$$

$$\text{So, } \Pi_1 = \frac{D}{dV\mu}$$

Step 6

Not applicable

Step 7

Check π -term:

$$\pi_1 = \frac{D}{dV\mu} \doteq \frac{F}{L \cdot LT^{-1} FT L^{-2}} = F^{\circ} L^{\circ} T^{\circ} \checkmark$$

Step 8

$$\frac{D}{dV\mu} = ct$$

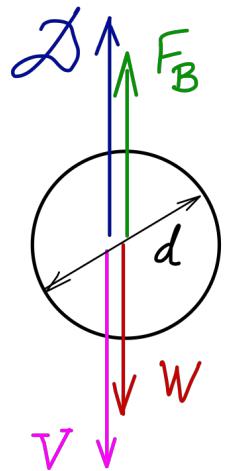
or $D = k \cdot d \cdot V \cdot \mu$

Compare to Stokes' law:

$$\underline{D = 3\pi d V \mu}$$

So $k = 3\pi !!!$

For a sphere dropping slowly in a viscous fluid at constant velocity V



$$\sum F_z = 0$$

$$D + F_B - W = 0 \Rightarrow D = W - F_B$$

From Stokes' law: $D \sim dV$

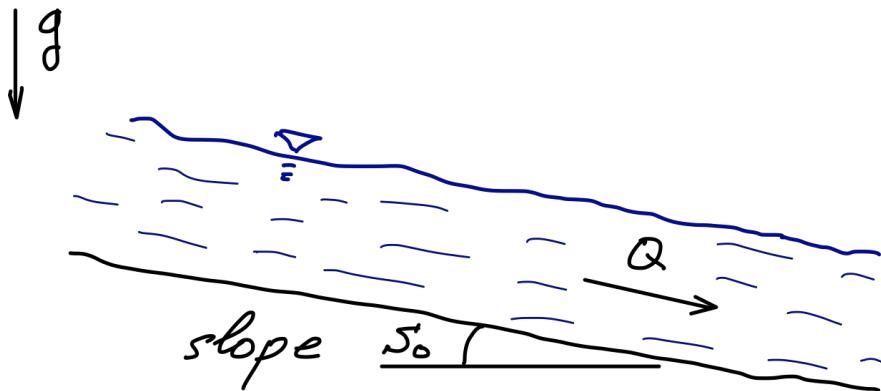
W and F_B are proportional to the volume of the sphere:

$$W - F_B \sim d^3$$

$$\begin{aligned} \text{Hence, } \quad dV &\sim d^3 \\ \Rightarrow \underline{\underline{V \sim d^2}} \end{aligned}$$

Conclusion: a sphere with double the diameter will fall 4x as fast.

Example: flow in an inclined open channel



A = cross-sectional area of the channel

ε = height of the roughness of the channel surface

$$Q = f(A, \varepsilon, g, S_0)$$

Put the above relation for channel flow Q in **non-dimensional** form.

Can you tell how Q depends on g , A and ε ?

Step 1
$$Q = f(A, \varepsilon, g, S_0)$$

Step 2
$$Q \doteq L^3 T^{-1}$$

$$A \doteq L^2$$

$$\varepsilon \doteq L$$

$$g \doteq L T^{-2}$$

$$S_0 \doteq F^\circ L^\circ T^\circ$$

Step 3 5 variables - 2 ref. dimensions = 3 π -terms

Step 4 Select as repeating variables: A and g

Step 5 By inspection:

$$\pi_1 = \frac{Q}{A^{5/4} \sqrt{g}}$$

$$\frac{L^3 T^{-1}}{L^{5/4} L^{1/2} T^{-1}} = F^0 L^0 T^0$$

$$\pi_2 = \frac{E}{\sqrt{A}}$$

$$\frac{L}{L} = F^0 L^0 T^0$$

$$\pi_3 = S_0 \quad \text{which is dimensionless}$$

Step 8 $\frac{Q}{A^{5/4} \sqrt{g}} = \phi \left(\frac{E}{\sqrt{A}}, S_0 \right)$

Remarks: a) Q is proportional to \sqrt{g}

b) We cannot tell how Q depends on A , E and S_0 because the function ϕ is not known.

■ TABLE 7.1

Some Common Variables and Dimensionless Groups in Fluid Mechanics

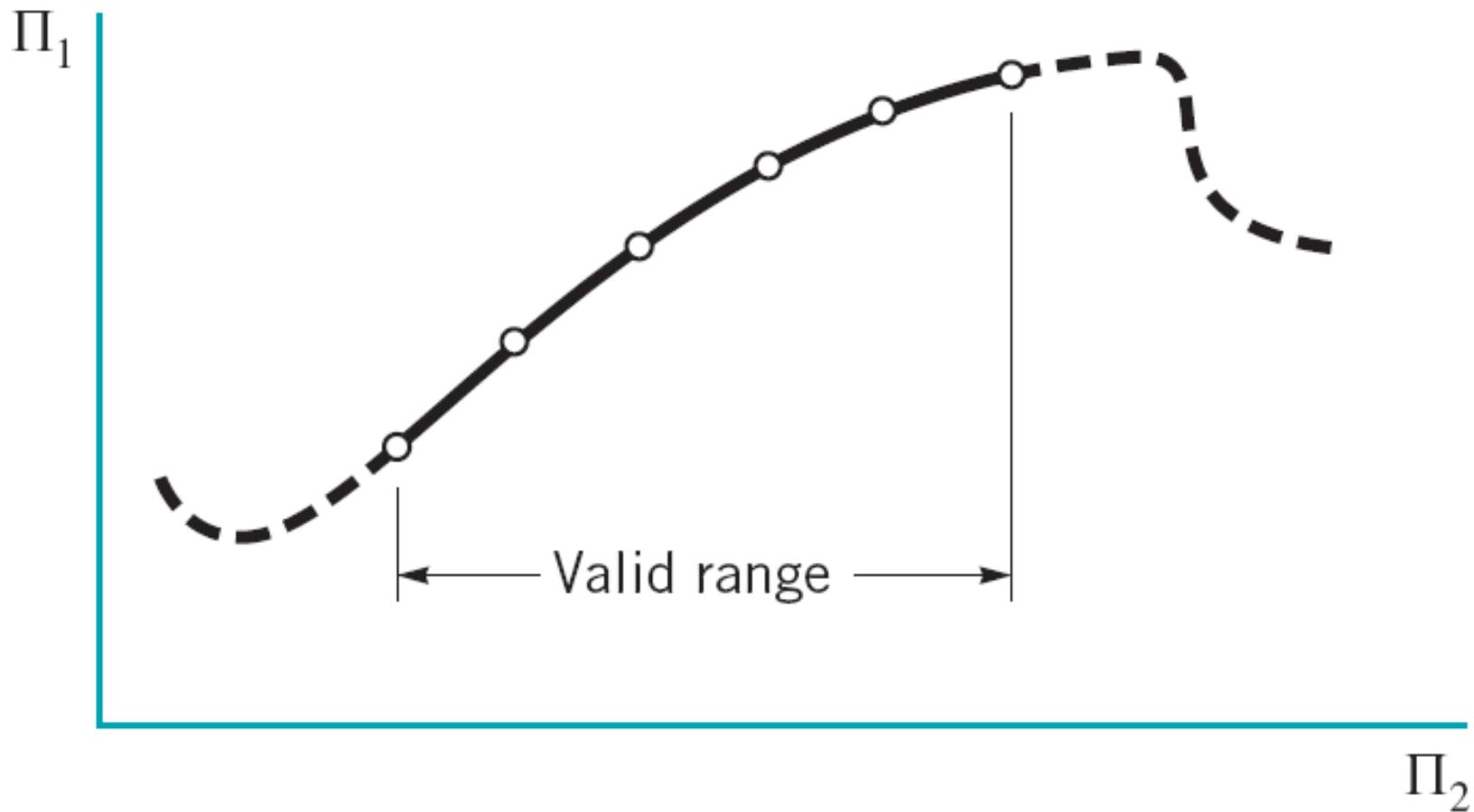
Variables: Acceleration of gravity, g ; Bulk modulus, E_v ; Characteristic length, ℓ ; Density, ρ ; Frequency of oscillating flow, ω ; Pressure, p (or Δp); Speed of sound, c ; Surface tension, σ ; Velocity, V ; Viscosity, μ

Dimensionless Groups	Name	Interpretation (Index of Force Ratio Indicated)	Types of Applications
$\frac{\rho V \ell}{\mu}$	Reynolds number, Re	inertia force viscous force	Generally of importance in all types of fluid dynamics problems
$\frac{V}{\sqrt{g \ell}}$	Froude number, Fr	inertia force gravitational force	Flow with a free surface
$\frac{p}{\rho V^2}$	Euler number, Eu	pressure force inertia force	Problems in which pressure, or pressure differences, are of interest
$\frac{\rho V^2}{E_v}$	Cauchy number, ^a Ca	inertia force compressibility force	Flows in which the compressibility of the fluid is important
$\frac{V}{c}$	Mach number, ^a Ma	inertia force compressibility force	Flows in which the compressibility of the fluid is important
$\frac{\omega \ell}{V}$	Strouhal number, St	inertia (local) force inertia (convective) force	Unsteady flow with a characteristic frequency of oscillation
$\frac{\rho V^2 \ell}{\sigma}$	Weber number, We	inertia force surface tension force	Problems in which surface tension is important

^aThe Cauchy number and the Mach number are related and either can be used as an index of the relative effects of inertia and compressibility. See accompanying discussion.

Problems with 2 π -terms

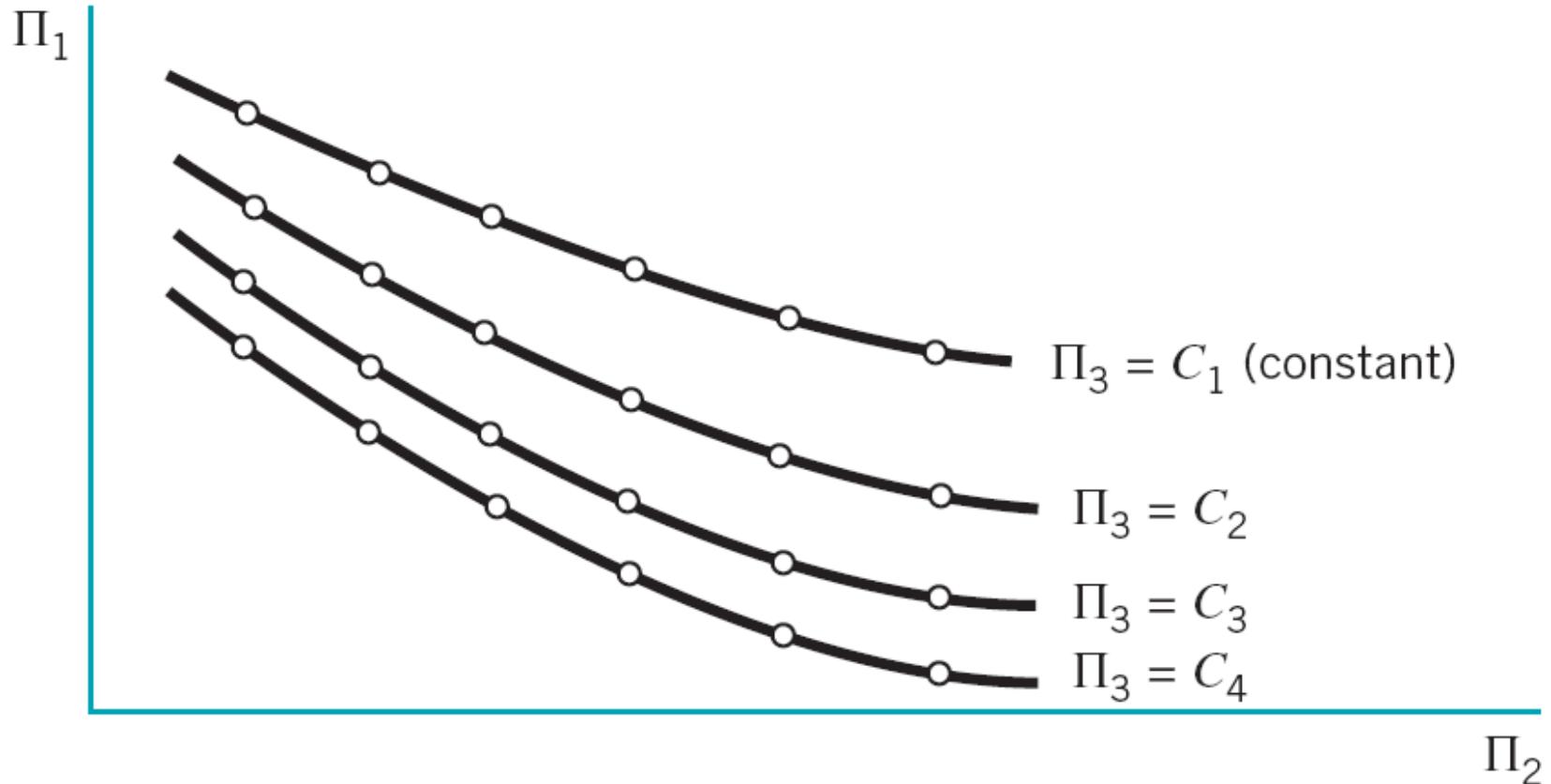
$$\Pi_1 = \Phi(\Pi_2)$$



The graphical presentation of data for problems involving two pi terms, with an illustration of the potential danger of extrapolation of data.

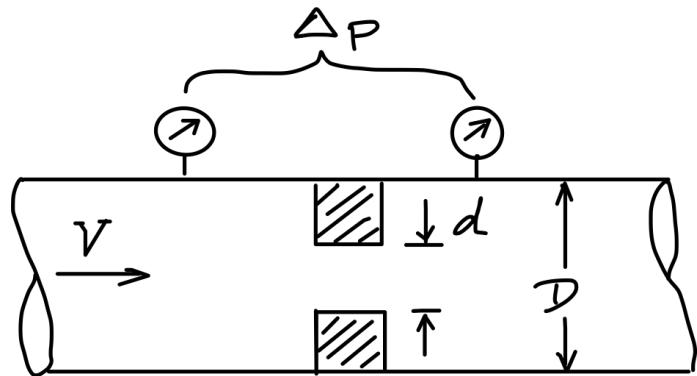
Problems with 3 π -terms

$$\Pi_1 = \Phi(\Pi_2, \Pi_3)$$



The graphical presentation of data for problems involving three pi terms.

Example: pressure drop across a constriction



$$V = 0.6 \text{ m/s}$$

$$\rho = 1000 \text{ kg/m}^3$$

$$D = 6 \text{ cm}$$

Viscous effects not important

Experimental data:

d (cm)	1.8	2.4	3	4.5
ΔP (Pa)	22200	7030	2880	570

Derive an expression for ΔP .

Step 1 $\Delta P = f(D, d, \rho, V)$

Step 2 $\Delta P \doteq FL^{-2}$

$$D \doteq L$$

$$d \doteq L$$

$$\rho \doteq FL^4 T^2$$

$$V \doteq LT^{-1}$$

Step 3 5 variables - 3 ref. dimensions = 2 n-terms

Step 4 Use d , V and ρ as repeating variables

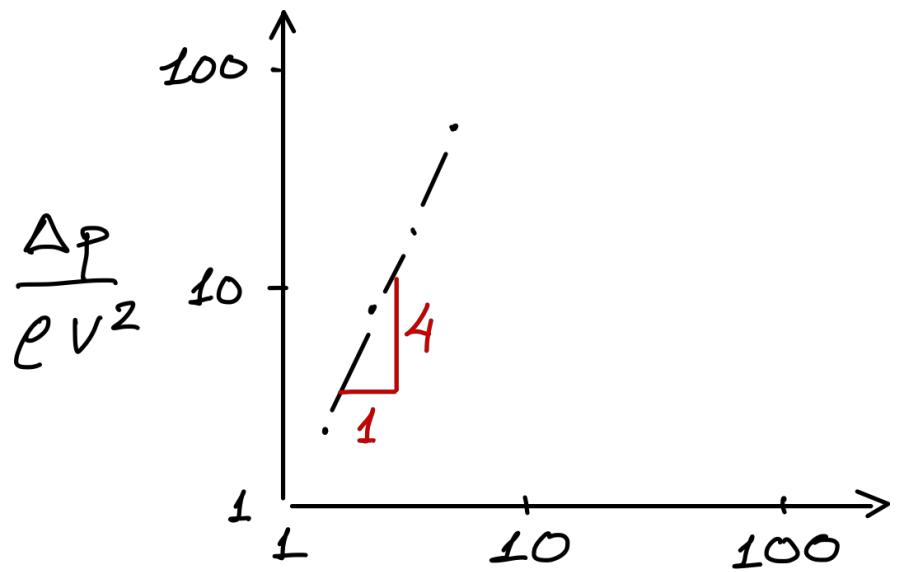
Step 5 $\Pi_1 = \frac{\Delta P}{\rho V^2}$

Step 6 $\Pi_2 = \frac{D}{d}$

Step 8 $\frac{\Delta P}{\rho V^2} = \phi\left(\frac{D}{d}\right)$

D/d	3.33	2.5	2.0	1.33
$\Delta P/\rho V^2$	61.7	19.5	8.0	1.58

Obviously nonlinear. Plot on log-log graph



$$\ln\left(\frac{\Delta P}{\rho V^2}\right) = -0.69 + 4 \cdot \ln\left(\frac{D}{d}\right)$$

$$\text{or } \frac{\Delta P}{\rho V^2} = 0.5 \cdot \left(\frac{D}{d}\right)^4$$

$$\Rightarrow \Delta P = \frac{1}{2} \rho V^2 \left(\frac{D}{d}\right)^4$$

Note: Equation valid only in the range
 $1.33 < D/d < 3.33$

Modeling

Model : representation of a physical system

```
graph TD; A[representation of a physical system] --> B[physical]; A --> C[mathematical]
```

Use a model to predict the behavior of the actual physical system, which is called the prototype.

An 1:197 scale model of the Guri Dam in Venezuela

Theory of models

For a certain physical phenomenon and for the **prototype**:

$$\Pi_1 = \Phi(\Pi_2, \Pi_3, \dots, \Pi_n)$$

For the same physical phenomenon and for the **model**:

$$\Pi_{1m} = \Phi(\Pi_{2m}, \Pi_{3m}, \dots, \Pi_{nm})$$

If Φ is the same and

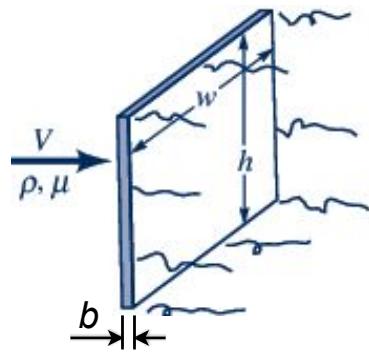
$$\left. \begin{array}{l} \Pi_2 = \Pi_{2m} \\ \Pi_3 = \Pi_{3m} \\ \dots \\ \Pi_n = \Pi_{nm} \end{array} \right\} \begin{array}{l} \text{Design conditions} \\ \text{or} \\ \text{Similarity requirements} \end{array}$$

then

$$\Pi_1 = \Pi_{1m}$$

Prediction equation

Example: drag on a thin plate



$$D = f(w, h, b, \mu, \rho, V)$$

Pi-theorem: $\frac{D}{w^2 \rho V^2} = \phi \left(\frac{h}{w}, \frac{b}{w}, \frac{\rho V w}{\mu} \right)$

Design conditions:

$$\left. \begin{array}{l} \frac{h_m}{w_m} = \frac{h}{w} \\ \frac{b_m}{w_m} = \frac{b}{w} \end{array} \right\} \text{geometric similarity}$$

$$\frac{\rho_m V_m w_m}{\mu_m} = \frac{\rho V w}{\mu} \quad \text{dynamic similarity}$$

Note: if $\frac{w_m}{w}$ is selected (i.e., 1:20)

Then $h_m = \frac{w_m}{w} h$ and $b_m = \frac{w_m}{w} b$ } so all length scales are the same $\frac{w_m}{w} = \frac{h_m}{h} = \frac{b_m}{b} = n_l$

n_l is the length scale (i.e., 1:20, 1: 1000, etc.)

Can define also velocity scale $n_v = \frac{v_m}{V}$
 density scale $n_\rho = \frac{\rho_m}{\rho}$ etc.

Usually, we specify the length scale n_l

Note: The other scales are not in general the same as the length scale

Example: The velocity scale in the plate drag problem is:

$$\frac{c_m v_m w_m}{\mu_m} = \frac{c V w}{\mu} \Rightarrow \frac{v_m}{V} = \left(\frac{c}{c_m} \right) \cdot \left(\frac{w}{w_m} \right) \cdot \left(\frac{\mu_m}{\mu} \right)$$

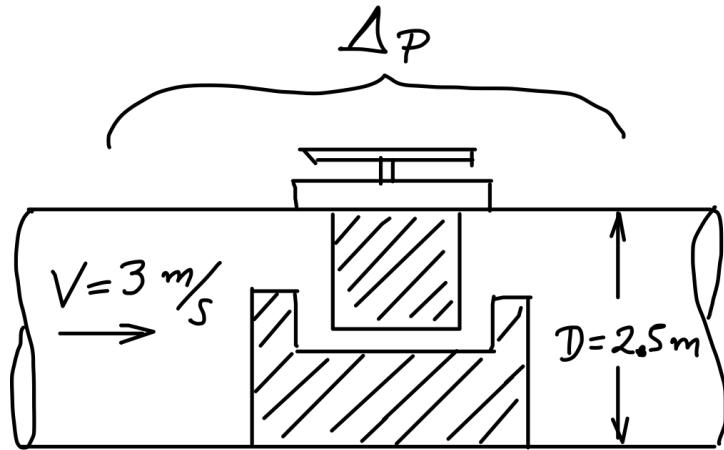
If the same fluid (air) is used in the model ($\rho_m = \rho$; $\mu_m = \mu$), then $\frac{v_m}{V} = \frac{w}{w_m} = \frac{20}{1}$

So, velocities in the model will be 20 times higher to satisfy dynamic similarity.

If water were used for the model:

$$\frac{V_m}{V} = \left(\frac{\ell}{\ell_m} \right) \cdot \left(\frac{\mu_m}{\mu} \right) \cdot \left(\frac{W}{W_m} \right)$$
$$= \frac{1.23 \text{ kg/m}^3}{998 \text{ kg/m}^3} \times \frac{1 \times 10^{-3} \text{ N.s/m}^2}{1.82 \times 10^{-5} \text{ N.s/m}^2} \times \frac{20}{1} = 1.35$$

Example: pressure drop across a valve



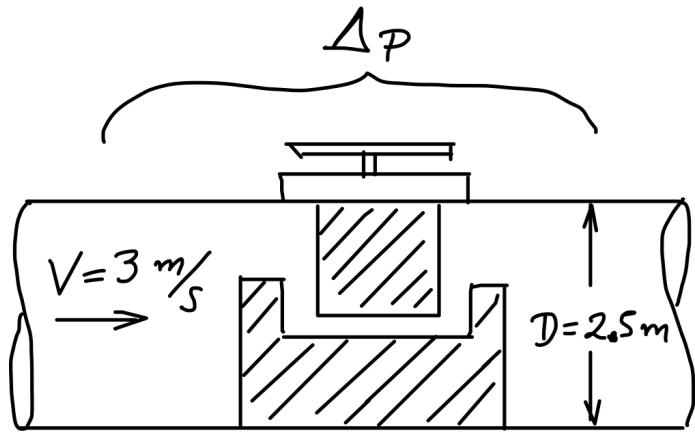
Alaska oil pipeline

$$\rho_{\text{oil}} = 930 \text{ kg/m}^3$$

$$\mu_{\text{oil}} = 0.48 \text{ N.s/m}^2$$

Use a 1:20 model with water as working fluid

- What is the flowrate through the model?
- What is the pressure drop in the prototype if the measured pressure drop in the model was $\Delta P_m = 15 \text{ N/m}^2$



$$\Delta P = f \left(\underbrace{D, l_1, l_2, \dots, l_n}_{\text{geometry}}, \underbrace{\rho, \mu, V}_{\text{geometry of valve}} \right)$$

Apply Π - theorem:

$$\frac{\Delta P}{\rho V^2} = \phi \left(\underbrace{\frac{l_1}{D}, \frac{l_2}{D}, \dots, \frac{l_n}{D}}_{\text{geometry}}, \underbrace{\frac{\rho V D}{\mu}}_{\text{Reynolds \#}} \right)$$

Euler #

Pressure
inertial

Inertial
Viscous

Design conditions:

$$\left. \begin{array}{l} \frac{l_{1m}}{D_m} = \frac{l_1}{D} \\ \frac{l_{2m}}{D_m} = \frac{l_2}{D} \\ \vdots \\ \frac{l_{nm}}{D_m} = \frac{l_n}{D} \end{array} \right\} \Rightarrow \frac{D_m}{D} = \frac{l_{1m}}{l_1} = \frac{l_{2m}}{l_2} = \dots = \frac{l_{nm}}{l_n} = \frac{1}{20}$$
$$n_l = \frac{1}{20} = \text{length scale}$$

Also, $\frac{\rho_m V_m D_m}{\mu_m} = \frac{\rho V D}{\mu}$

$$\Rightarrow V_m = V \cdot \left(\frac{\rho}{\rho_m} \right) \left(\frac{D}{D_m} \right) \cdot \left(\frac{\mu_m}{\mu} \right) \quad \begin{array}{l} \text{model: water} \\ \text{prototype: oil} \end{array}$$

$$= 3 \text{ m/s} \left(\frac{930}{999} \right) \left(\frac{20}{1} \right) \left(\frac{1.12 \times 10^{-3}}{0.48} \right) \Rightarrow V_m = 0.13 \text{ m/s}$$

$$Q_m = \left(\frac{\pi}{4} D_m^2 \right) \cdot V_m = \frac{\pi}{4} \left(\frac{D}{20} \right)^2 \cdot V_m = \frac{\pi}{4} \cdot \left(\frac{2.5 \text{ m}}{20} \right)^2 0.13 \text{ m/s}$$

$$\Rightarrow \underline{\underline{Q_m = 0.0016 \text{ m}^3/\text{s}}}$$

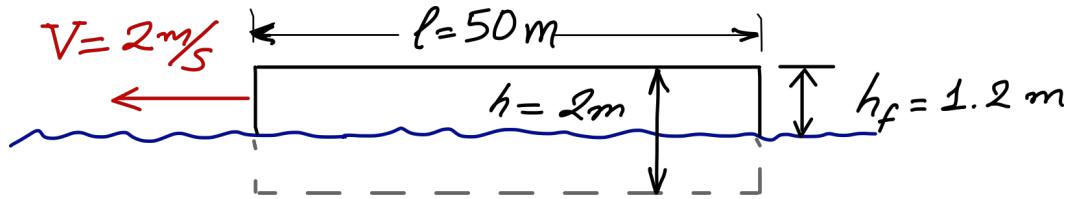
From the prediction equation:

$$\frac{\Delta P_m}{\rho_m V_m^2} = \frac{\Delta P}{\rho V^2}$$

$$\begin{aligned}\Rightarrow \Delta P &= \Delta P_m \cdot \left(\frac{\rho}{\rho_m} \right) \cdot \left(\frac{V}{V_m} \right)^2 \\ &= 15 \text{ N/m}^2 \cdot \left(\frac{930}{999} \right) \left(\frac{3}{0.13} \right)^2\end{aligned}$$

$$\Rightarrow \underline{\Delta P = 7440 \text{ N/m}^2} \quad \text{or} \quad \underline{7.44 \text{ kPa}}$$

Example: flow in an open channel (gravitational effects)



To estimate the towing force of a river barge a 1:20 model is used.

- a) Determine the model towing speed
- b) The actual force if the model force is 6N

$$F = f(\ell, w, h, h_f, \rho, \mu, g, \varsigma, \nu)$$

Apply the Buckingham π -theorem:

$$\frac{F}{\rho V^2} = \phi \left(\frac{w}{l}, \frac{h}{l}, \frac{h_f}{l}, \frac{\rho V l}{\mu}, \frac{V}{\sqrt{g e}}, \frac{\rho V^2 l}{\sigma} \right)$$

$\underbrace{\frac{w}{l}}$ Reynolds # $\underbrace{\frac{V}{\sqrt{g e}}}$ Froude # $\underbrace{\frac{\rho V^2 l}{\sigma}}$ Weber #

$\underbrace{\frac{h}{l}}$ $\underbrace{\frac{h_f}{l}}$ $\underbrace{\frac{\rho V l}{\mu}}$ $\underbrace{\frac{V}{l}}$ $\underbrace{\frac{\rho V^2 l}{\sigma}}$

$\frac{\text{inertial}}{\text{viscous}}$ $\frac{\text{inertial}}{\text{gravity}}$ $\frac{\text{inertial}}{\text{surface tension}}$

Assume that surface tension is not very important:

$$\frac{F}{\ell^2 \rho V^2} = \phi \left(\frac{w}{\ell}, \frac{h}{\ell}, \frac{h_f}{\ell}, \frac{\rho V \ell}{\mu}, \frac{V}{\sqrt{g \ell}} \right)$$

Design conditions:

$$\frac{w_m}{\ell_m} = \frac{w}{\ell}$$

$$\frac{h_m}{\ell_m} = \frac{h}{\ell}$$

$$\frac{h_{fm}}{\ell_m} = \frac{h_f}{\ell}$$

} geometric similarity

$$\frac{\ell_m V_m \ell_m}{\mu_m} = \frac{\rho V \ell}{\mu}$$

(1) } dynamic similarity

$$\frac{V_m}{\sqrt{g_m \ell_m}} = \frac{V}{\sqrt{g \ell}}$$

(2)

If we use the same fluid (water) in our model experiments:

$$(1) \Rightarrow \sqrt{m} l_m = \sqrt{\ell} \Rightarrow \frac{\sqrt{m}}{\sqrt{\ell}} = \frac{l}{l_m}$$

But since $g_m = g$

$$(2) \Rightarrow \frac{\sqrt{m}}{\sqrt{l_m}} = \frac{\sqrt{\ell}}{\sqrt{\ell}} \Rightarrow \frac{\sqrt{m}}{\sqrt{\ell}} = \sqrt{\frac{l_m}{\ell}}$$

- cannot satisfy unless $l_m = \ell$ (meaningless)
- Distorted model

Gravitational effects are the most important
→ Require *Froude number similarity*

$$\therefore \frac{V_m}{V} = \sqrt{\frac{l_m}{l}} \Rightarrow V_m = V \cdot \sqrt{\frac{l_m}{l}} = 2 \text{ m/s} \cdot \sqrt{\frac{1}{20}}$$
$$\Rightarrow \underline{\underline{V_m = 0.447 \text{ m/s}}}$$

From the prediction equation:

$$\frac{F_m}{l_m^2 \cdot \rho_m V_m^2} = \frac{F}{l^2 \rho V^2} \Rightarrow F = F_m \cdot \left(\frac{l}{l_m}\right)^2 \left(\frac{V}{V_m}\right)^2$$
$$\Rightarrow F = 6 \text{ N} \cdot \left(\frac{20}{1}\right)^2 \cdot \left(\frac{2}{0.447}\right)^2 \Rightarrow \underline{\underline{F = 48'000 \text{ N}}}$$