Dimensional analysis

Fluid mechanics is still partly an experimental science
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 Impractical (i.e., vary p - keep u constant)
« Difficult to analyse (combine curves)



Best alternative: dimensional analysis
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« Only two variables instead of five
« Easier to work with (vary V only, while keeping D, p, p constant)
« Dimensionless groups -> no unit dependance



Buckingham 1r-theorem

“If an equation involving k variables is dimensionally

homogeneous, it can be reduced to a relationship among k—r

independent dimensionless products (1r-terms), where r is the

minimum number of reference dimensions required to describe

the variables”

Reference dimensions: Usually some or all of F (force), L (length) and T (time)
or M (mass), L (length) and T (time)

or combinations of the basic dimensions (i.e., MT2, Lor FL, T)

Note: We cannot use both F and M, because the two are not independent of
each other. Force is related to mass through Newton’s 2nd law:

F =M-a
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Determination of pi-terms

List all variables that are involved in the problem
— Geometry
— Fluid properties (density, viscosity, etc.)
— External effects (velocity, pressure, gravity, etc.)
— Include variable even if their value is constant (i.e., 9)
— Variables must be independent of each other (i.e., not all of p, g amd ybecause y=p g )

Express each variable in terms of basic dimensions
Determine the required number of pi-terms

Select a number of repeating variables, where the number required is equal to
the number of reference dimensions

Form a pi-term by multiplying one of the nonrepeating variables by the product
of the repeating variables, each raised to an exponent that will make the
combination dimensionless

Repeat Step 5 for each of the remaining nonrepeating variables
Check all the resulting pi-terms to make sure they are dimensionless

Express the final form as a relationship among the pi-terms and think what it
means



Example: pipe flow
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Example: drag on a sphere

- Geometry: d
Step 1 Z) /7\ l/ = [/aé/c/ £ V) Fluid properties: y, p
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Drag coefficient, Cp,
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Reynolds number, %d

The effect of Reynolds number on the drag coefficient, C for a smooth sphere
with C, = & /Y> ApV2, where A is the projected area of sphere, md?/4



Example: drag on a sphere in viscous fluid (Stoke’s law)
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Example: flow in an inclined open channel
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Put the above relation for channel
flow Q in non-dimensional form.

Can you tell how Q depends on g,
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m TABLE 7.1

Some Common Variables and Dimensionless Groups in Fluid Mechanics
I ——

Variables: Acceleration of gravity, g; Bulk modulus, E,; Characteristic length, €; Density, p;
Frequency of oscillating flow, w; Pressure, p (or Ap); Speed of sound, ¢; Surface tension, o
Velocity, V; Viscosity, u

Dimensionless Interpretation (Index of  Types of
Groups Name Force Ratio Indicated) Applications
pVe Reynolds number, Re inertia force Generally of importance in
M viscous force all types of fluid dynamics
problems
Vv Froude number, Fr nertia force Flow with a free surface
Vgl gravitational force
P Euler number, Eu pressure force Problems in which pressure,
pV?2 inertia force or pressure differences, are
of interest
sz Cauchy number,* Ca inertia force Flows in which the
E, compressibility force -c01.npr6551b111ty of the fluid
is important
Vv Mach number,* Ma inertia force Flows in which the
c compressibility force gompresmbﬂnty of the fluid
1S 1mportant
wl Strouhal number, St inertia (local) force Unsteady flow with a
vV inertia (convective) force cha}'actq istic frequency of
oscillation
pV* Weber number, We inertia force Problems in which surface
o surface tension force tension 1s important

“The Cauchy number and the Mach number are related and either can be used as an index of the relative effects of inertia and com-
pressibility. See accompanying discussion.



Problems with 2 mr-terms

I, = O(T1)

\\_,’
L—Valid range —

I,

The graphical presentation of data for problems involving two pi terms, with an
illustration of the potential danger of extrapolation of data.



Problems with 3 r-terms

I, = ®(I1,,I1,)

[1; = C; (constant)

The graphical presentation of data for problems involving three pi terms.



Example: pressure drop across a constriction
A
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Modeling
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Theory of models

For a certain physical phenomenon and for the prototype:

1, = ®(I1,,IT,,..,IT, |

For the same physical phenomenon and for the model:

If ® is the same and

then
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Design conditions
, or
Similarity requirements

Prediction equation



Example: drag on a thin plate
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Example: pressure drop across a valve
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Example: flow in an open channel (gravitational effects)

V= 27% e {=50m— =)
- b= Dom hp=4.2m

- — — — — v _

7o 51777 b /%c ﬁn//?g 4/2‘6 d/ & rver é' /é
& (720 ol ir e

z/ Determine e Mdﬂé/ %077/'%“7 ?f@/
é/ The cereeert poree o e wroel e [ &7 4

sz/!iw/é/@/f/#/j/ 5 V)
J//ﬁ Fhe fﬂzf/yéa’m 77 Aheoressr -

%({ /_}__ﬁ/ﬁﬁ,l A’VZ/)

%1 0 V e ©
2 “/"‘ZJ/ C——J
e/;ﬂ f Ff “/é WEéer#
| NErt e # J7REV# L

Ireric

/m//? Swurfece

S 21V 0N

v/ Sscons



/40”44777: //zé J‘/(V,éz( Aericion 1S PIL Vefy

/?ﬂ?ﬂa/téz’ﬂf=
E .- # (54,
'?{r‘\/'fﬂ mﬁ%'z%‘a%f:
Wom = W
b 4
_Aﬂ. — A
Com €
Vb _ A
Em £
b Vo Cor _ 2V
/A,

€V

}/
&

\f;%)

COMESY T E S22/ é/,/ zL

noemts e S /?77/'47/'?



TF we wre Abe e %/ A/Mﬁ% 77 OXY
rodel fff//‘?ﬁ%{f :

@) = Vb = VO o Vo _ ¢
V &
B f‘/f//f(/i?c-_;
(2) = Vo _ Vo Vo ]/
(¢, (¢ V
by

=/ /7 mf&?ﬂ/}yéﬂ“ )

— lmwd 2t Z(%éf/

— DPrsto /zé/




Grav/ fa’z‘/'ﬂ%w/ LY lcAts are PR, /m/gfzényf
—> gef/ﬂwifd ﬁfazm/é Drzerber ;"/'977/%?//?

_]/ﬂ: .é"”— = Vm=v-@=2%~gﬂ

0. 447 m<

b
>
)

From ¥4/ £ /O/Z%'c%/oﬂ e/m&z‘xb% :

5 _ F é/::p;q,/,/i)(,l/.r
ol Vot BV n) | Vo

M

2 z / A
= F= {/l/-(_'iﬁ). _ ;) = F = 48000

0.4%




